

Caltrain / HSR Blended System Grade Crossing and Traffic Analysis

Local Policy Maker Group Meeting May 2013

- 1. Context
- 2. Gate Down Time Analysis
- 3. Local Traffic Analysis
- 4. Next Steps

* Note: Grade separations not required by law if operating speeds do not exceed 125mph

- Understand potential impact of blended system on gate down time
- Understand potential impact of changed gate down
 time on local traffic
- Inform future decisions about at-grade crossing improvements

Gate Downtime Analysis

- Analysis Tool: TrainOps (LTK, Engineering)
- Inputs
 - Electrified system with advanced signal system
 - Prototypical schedules
 - Long middle passing track option
- Analyzed scenarios at 40 at-grade crossings
 - Today: Caltrain diesel (5 trains/ph/pd)
 - Electrified future scenarios:
 - ➢ 6 Caltrain trains/ph/pd ("6/0")
 - 6 Caltrain trains/ph/pd + 2 HSR trains/ph/pd ("6/2")
 - 6 Caltrain trains/ph/pd + 4 HSR trains/ph/pd ("6/4")

Caltrain Gate Down Time Variables

- Increased train service does not necessarily equal increased gate down time
- Interplay of key factors
 - More trains <u>increase</u> gate down time
 - Advanced signal system <u>decreases</u> gate down time
 - Double gate action removal
 - Gate efficiency/consistency
 - Overlapping 2+ train events at crossing <u>decreases</u> gate down time
 - Net result at each crossing: varying gate down time (increase/decrease)

Example: Double Gate Action Removed

	Today	6/0	6/2	6/4			
	(Approximate Minutes / AM Peak Hour)						
North Lane (Burlingame)	11.0	9.5	12.0	14.0			

- Today gate down time: 11 out of 60 minutes
- From Today to 6/0

Caltrain

- More train events
- Double gate removal
- Net decrease in gate down time
- From 6/0 to 6/2 and 6/4
 - More train events
 - Net increase in gate down time

Example: Gate Efficiency/Consistency

	Today	6/0	6/2	6/4		
	(Approximate Minutes / AM Peak Hour)					
Glenwood Ave.(Menlo Park)	9.5	9.0	11.0	14.5		

- Today gate down time: 9.5 out of 60 minutes (worst peak hour)
- From Today to 6/0

Caltrain

- More train events
- Gate down time efficiency/consistency
- Net decrease in gate downtime
- From 6/0 to 6/2 and 6/4
 - More train events
 - Net increase in gate downtime

Example: Multiple Trains Crossing

	Today	6/0	6/2	6/4			
	(Approximate Minutes / AM Peak Hour)						
Center St. (Millbrae)	11.5	8.5	10.5	14.0			

- Today gate down time:11.5 out of 60 minutes (worst peak hour)
- From Today to 6/0

Caltrain

- More train events
- Multiple trains crossing at the same time
- Net decrease in gate downtime
- From 6/0 to 6/2 and 6/4
 - More train events
 - Net increase in gate downtime

- Evaluation focuses on the worse peak hour for each crossing
- Increased train service does not necessarily equal proportional increase in gate down time

- Gate downtime impacts vary by crossing
- Model results have limited application
- Gate downtime results reflect order-of-magnitude

Local Traffic Analysis

- Scope revised from 80 total to 5 sample
- Usefulness of full analysis questionable
 - Prototypical train schedule
 - Unacceptable future traffic conditions
 - Traffic model limitations
- Examine a few to see what we might learn

- Sample intersection selection
 - From each of 3 counties in peninsula rail corridor
 - Pre-empted and non pre-empted intersections
 - Within and outside of assumed passing track location

- Simulated scenarios
 - 2035 traffic condition
 - Today's Caltrain service
 - Electrified 6/0, 6/2, 6/4 services

- Unacceptable future traffic conditions (without service change)
- < 80 seconds of delay/ vehicle is excessive

	Average Delay (sec per vehicle) / LOS					
Intersection	Exis	sting	2035 No Service Change			
	AM Peak	PM Peak	AM Peak	PM Peak		
16 th Street/7 th Street/Mississippi Street	41.7 / D	35.2 / D	<mark>>224.4 / F</mark>	<mark>>283.6 / F</mark>		
25 th Avenue/El Camino Real	18.8 / B	23.3 / C	<mark>>171.1 / F</mark>	74.7 / E		
25 th Avenue/Delaware Street	10.2 / B	10.3 / B	12.4 / B	13.1 / B		
Broadway/El Camino Real	22.8 / C	26.1 / C	47.9 / D	61.5 / E		
Churchill Avenue/Alma Street	49.9 / D	71.1 / E	<mark>>103.2 / F</mark>	<mark>>132.5 / F</mark>		

 Increased train service does not necessarily increase in delay

- Interplay of key factors
 - # of gate events
 - Average gate down time/event
- Net result at each crossing: varying delay (increase/decrease)

Caltrain Example: Pre-empted Intersection

- Gates communicate with intersection signal
- Varying changes in gate down time/event for 6/0, 6/2, 6/4
- Driving factor: Increased gate events increase delay

	Average Delay (sec per vehicle)		Chang 203	Delay nge	
Intersection	Existing	2035 No Service Change	"6/0"	"6/2"	"6/4"
AM Peak Hour Churchill Avenue/Alma Street	49.9	103.2	+4.2	+1.2	+8.4

Example: Pre-empted Intersection

- Gates communicate with intersection signal
- Located within passing track
- Average gate down time/event is similar 6/0, 6/2, 6/4
- Increased gate events increase delay (6/0, 6/2)
- Passing tracks allow more trains w/o increasing gate events (6/4)

	Avera (sec p	age Delay er vehicle)	Change in Average Delay 2035 Service Change		
Intersection	Existing	2035 No Service Change	"6/0"	"6/2"	"6/4"
AM Peak Hour 25th Avenue/Delaware Street	10.2	12.4	+0.1	+0.6	+0.0

Caltrain Example: Pre-empted Intersection

- Gates communicate with intersection signal
- Decrease in average gate down time/event decrease delay (6/0, 6/2)
- Increase in gate events and average gate time/event increase delay (6/4)

	Aveı (sec p	Average Delay (sec per vehicle)		Change in Average Delay 2035 Service Change		
Intersection	Existing	2035 No Service Change	"6/0"	"6/2"	"6/4"	
PM Peak Hour 16 th Street/7 th Street/Mississippi Street	35.2	283.6	-27.2	-18.4	+2.9	

Example: Non Pre-empted Intersection

- Gates do not communicate with intersection signal
- No change to delay (6/0, 6/2, 6/4)

Caltrain

- Model evaluates one intersection in isolation
- Model does not see impacts to neighboring intersections

	Average Delay (sec per vehicle)		Chang 203	Delay nge	
Intersection	Existing	2035 No Service Change	"6/0"	"6/2"	"6/4"
AM Peak Hour Broadway/El Camino Real	22.8	47.9	+0.0	+0.0	+0.0

Important Notes

- Results from sample analysis inconclusive
- Additional analysis needed
 - Peninsula Corridor Electrification EIR (2013 2014)
 - Blended system planning and EIS/EIR (TBD)
- Lessons learned
 - Schedule
 - Future traffic condition
 - Traffic modeling tool

Next Steps (Finalize Report)

- Release Draft Report: May 29th
- End of comment period: June 14th
- Final Report: end of June