Average Weekday Ridership
Since 2004 143% increase

<table>
<thead>
<tr>
<th>Year</th>
<th>Riders (Boardings)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1999</td>
<td>22,000</td>
</tr>
<tr>
<td>2000</td>
<td>23,000</td>
</tr>
<tr>
<td>2001</td>
<td>24,000</td>
</tr>
<tr>
<td>2002</td>
<td>25,000</td>
</tr>
<tr>
<td>2003</td>
<td>26,000</td>
</tr>
<tr>
<td>2004</td>
<td>27,000</td>
</tr>
<tr>
<td>2005</td>
<td>28,000</td>
</tr>
<tr>
<td>2006</td>
<td>29,000</td>
</tr>
<tr>
<td>2007</td>
<td>30,000</td>
</tr>
<tr>
<td>2008</td>
<td>31,000</td>
</tr>
<tr>
<td>2009</td>
<td>32,000</td>
</tr>
<tr>
<td>2010</td>
<td>33,000</td>
</tr>
<tr>
<td>2011</td>
<td>34,000</td>
</tr>
<tr>
<td>2012</td>
<td>35,000</td>
</tr>
<tr>
<td>2013</td>
<td>36,000</td>
</tr>
<tr>
<td>2014</td>
<td>37,000</td>
</tr>
<tr>
<td>2015</td>
<td>38,000</td>
</tr>
<tr>
<td>2016</td>
<td>39,000</td>
</tr>
<tr>
<td>2017</td>
<td>40,000</td>
</tr>
<tr>
<td>2018</td>
<td>41,000</td>
</tr>
<tr>
<td>2019</td>
<td>42,000</td>
</tr>
<tr>
<td>2020</td>
<td>43,000</td>
</tr>
<tr>
<td>2021</td>
<td>44,000</td>
</tr>
<tr>
<td>2022</td>
<td>45,000</td>
</tr>
<tr>
<td>2023</td>
<td>46,000</td>
</tr>
<tr>
<td>2024</td>
<td>47,000</td>
</tr>
<tr>
<td>2025</td>
<td>48,000</td>
</tr>
<tr>
<td>2026</td>
<td>49,000</td>
</tr>
<tr>
<td>2027</td>
<td>50,000</td>
</tr>
<tr>
<td>2028</td>
<td>51,000</td>
</tr>
<tr>
<td>2029</td>
<td>52,000</td>
</tr>
<tr>
<td>2030</td>
<td>53,000</td>
</tr>
<tr>
<td>2031</td>
<td>54,000</td>
</tr>
<tr>
<td>2032</td>
<td>55,000</td>
</tr>
<tr>
<td>2033</td>
<td>56,000</td>
</tr>
<tr>
<td>2034</td>
<td>57,000</td>
</tr>
<tr>
<td>2035</td>
<td>58,000</td>
</tr>
<tr>
<td>2036</td>
<td>59,000</td>
</tr>
<tr>
<td>2037</td>
<td>60,000</td>
</tr>
<tr>
<td>2038</td>
<td>61,000</td>
</tr>
<tr>
<td>2039</td>
<td>62,000</td>
</tr>
<tr>
<td>2040</td>
<td>63,000</td>
</tr>
<tr>
<td>2041</td>
<td>64,000</td>
</tr>
</tbody>
</table>

Standees: 2015 Maximum Loads

<table>
<thead>
<tr>
<th>Time</th>
<th>Depart SJ</th>
<th>Percent of Seated Capacity (low season)</th>
<th>Percent of Seated Capacity (high season)</th>
</tr>
</thead>
<tbody>
<tr>
<td>7:03 AM</td>
<td>135%</td>
<td>158%</td>
<td></td>
</tr>
<tr>
<td>7:45 AM</td>
<td>128%</td>
<td>150%</td>
<td></td>
</tr>
<tr>
<td>8:03 AM</td>
<td>127%</td>
<td>149%</td>
<td></td>
</tr>
<tr>
<td>5:23 PM</td>
<td>122%</td>
<td>143%</td>
<td></td>
</tr>
<tr>
<td>6:57 AM</td>
<td>122%</td>
<td>142%</td>
<td></td>
</tr>
<tr>
<td>7:50 AM</td>
<td>117%</td>
<td>137%</td>
<td></td>
</tr>
<tr>
<td>6:45 AM</td>
<td>108%</td>
<td>126%</td>
<td></td>
</tr>
<tr>
<td>6:50 AM</td>
<td>106%</td>
<td>124%</td>
<td></td>
</tr>
<tr>
<td>4:39 PM</td>
<td>106%</td>
<td>124%</td>
<td></td>
</tr>
<tr>
<td>7:55 AM</td>
<td>103%</td>
<td>121%</td>
<td></td>
</tr>
<tr>
<td>8:40 AM</td>
<td>102%</td>
<td>119%</td>
<td></td>
</tr>
<tr>
<td>4:23 PM</td>
<td>96%</td>
<td>113%</td>
<td></td>
</tr>
</tbody>
</table>
Exceeding Capacity Today

Rider Average Trip

- Caltrain
 - Average trip length 20-28 miles
 - Average trip time 30-50 minutes
- Other Bay Area Transit Systems
 - BART 14 miles / 24 minutes
 - Muni 2.8 miles / variable
 - VTA light rail 5.7 miles / 23 minutes
 - ACE 48 miles / 60+ minutes
Regional Transportation Needs

• US 101 and Interstate 280 Congested
• Corridor supports growing economy
 - 14% CA GDP; 52% CA patents; 25% CA tax revenue
• Caltrain Commuter Coalition (formed 2014)
 - 75% Caltrain rider’s commute to work; 60% choice riders

Need to Maximize Capacity

• Add cars to diesel trains now
• Caltrain Electrification (2020)
 - More trains / serve more riders
 - Increase station stops and/or reduced travel times
• Level boarding and longer trains
Key Regional Benefits

- **Greenhouse Gases Annual**: 176,000 metric tons of CO₂
- **Daily Traffic Congestion**: 619,000 vehicle miles
- **Engine Noise**: Reduced
- **Up to 97% Caltrain Emission Improvement**
- **111,000 Ridership Daily**
- **More Service**: Improved frequency / quicker trips

Note: 2013 Bay Area Council Report, generates $2.5 billion economic activity and 9,600 jobs

PCEP Service Benefits

<table>
<thead>
<tr>
<th>Metric</th>
<th>Today</th>
<th>PCEP</th>
</tr>
</thead>
<tbody>
<tr>
<td>Trains / peak hour / direction</td>
<td>5</td>
<td>6</td>
</tr>
</tbody>
</table>

Example Baby Bullet Train

- Retain 5-6 stops: 60 minutes vs. 45 minutes
- Retain SF to SJ: 6 stops vs. 13 stops

Example Redwood City Station

- Train stops / peak hour: 3 vs. 5
Electrification Project

2020 Revenue Service

Important milestones to meet 2020 service date
2 Key Contracts / Milestones

- Design Build Electrification Infrastructure
 - RFQ Issued / 6 Teams Pre Qualified
 - DB RFP Issued
 - Contract Award (Fall 2015)
- Electric Multiple Units (96 cars)
 - RFI Issued (2 – 4 builders interested)
 - RFP to be issued July 2015
 - Contract Award (Winter 2015/2016)

EMU Original Plan / Modification Consideration
Information to Car Builders

Summer 2014

• Growing Demand
 - Weekday ridership today: 60,000+
 - Weekday ridership future: 110,000+

• Today
 - 20+ mile trips
 - 96%-135% peak weekday (over capacity in low season)
 - 11% bikes on board

• Future
 - Share train slots (6 Caltrain / 4 HSR) per hour / direction

Request for Information

Summer 2014

<table>
<thead>
<tr>
<th>Attributes</th>
<th>Industry Confirmation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Maximize Capacity</td>
<td>• Bi-level (versus single level)</td>
</tr>
<tr>
<td>Previously Made</td>
<td>• Service proven options</td>
</tr>
<tr>
<td></td>
<td>• Saves costs / time</td>
</tr>
<tr>
<td>US Regulation Compliance</td>
<td>• ADA</td>
</tr>
<tr>
<td></td>
<td>• Buy America</td>
</tr>
<tr>
<td></td>
<td>• FRA Waiver / Alternative Compliant Vehicles Criteria</td>
</tr>
<tr>
<td></td>
<td>• Meet Caltrain Technical / Quality Standards</td>
</tr>
<tr>
<td>Floor Threshold</td>
<td>• 2 double doors per car (low-level boarding)</td>
</tr>
<tr>
<td></td>
<td>• ~22” to ~25” most common</td>
</tr>
</tbody>
</table>

Note: Anticipate adequate competition for the RFP
Recommended EMU

- Bi-level car
- 2 double doors (located: ~25” floor)
- Passengers step (1-2) from platform
- ADA passengers and bikes located ~25” level
- ADA use mini highs and wayside lifts

1-2 steps onboard

Similar to Today’s Bombardier
Future Level Boarding
(Beyond Electrification)

• Important to Caltrain
• Safety enhancements
• Operating efficiencies
• Passenger convenience
• ADA

Future Level Boarding continued
(Beyond Electrification)

• Caltrain ~25” Dedicated Level Boarding all stations
• HSR ~50” Dedicated Level Boarding 2 – 3 stations
 - Transbay Terminal Center
 - Millbrae
 - San Jose Diridon
Level Boarding Challenges

- Lengthy construction period with revenue service
- CPUC waiver needed for freight corridor
- Tenants with different boarding heights
 - Altamont Corridor Express
 - Capitol Corridor
 - Amtrak
- Station area impacts (e.g. ramps, circulation, etc.)

Request for EMU Modification
Request for EMU Modifications

- Stakeholder request for car modification
- Caltrain bi-level EMU ~25” boarding height
- HSR single level cars ~50” boarding height (different needs than Caltrain)
- Can Caltrain modify EMUs to not preclude ~50” boarding in the future?

Explore Modification Options

- 6-month effort (Dec 2014 to May 2015)
- Car builder interviews w/ HSR
- Technical analysis w/ HSR
- Caltrain operational assessment
Car Builder Interviews

- 7 Participated
- Proposed Modification Solutions
 - Option A Cars with more doors
 (Seat loss 60 - 100 per 6-car train)
 - Option B Cars with traps
 (No seat loss, operational challenge)
- Redesign existing vehicles (not starting from scratch)
- Vehicle delivery (2020 revenue service)
- Competition adequate

Caltrain Operational Assessment
Analysis

• 2 Modification Options
• 2 Timeframes
 – 2020 electrified service without HSR
 – Future blended service with HSR
• Focus Areas
 – Boarding for passengers with and without bikes, ADA
 – Passenger circulation within the cars
 – Operational changes

Terminology

Notes: Caltrain EMU Floor ATOR: 22”-25” (for this presentation ~25”); HSR Train Floor ATOR: 48”-51” (for this presentation ~50”)
2020 Evaluation
Mixed EMU and Diesel Service
(Using Existing Stations)

Modification A (2020)
Cars with More Doors

- 4 double doors (located: ~25” & ~50”)
- ~50” double doors may not be feasible
- Passengers / bikes use ~25” doors (1-2 steps)
- ADA location TBD
 - Located at ~50” (use high doors: need high blocks / wayside lift)
 - Located at ~25” (use low doors: need mini high / wayside lift)
Modification A (2020) continued

Cars with More Doors

- High Block
- Wayside lift
- Mini High

Modification B (2020)

Cars with Traps

- Trap: 3-5 steps
- Platform 8"

- Open Trap
- Close Trap
- Single Door w/ Trap
Modification B (2020) continued

Cars with Traps

- 2 single doors w/ traps, 2 single doors no trap
 - All doors to ~50” floor
- Single door access (longer dwell)
- Passengers/bikes use doors w/ traps (3-5 steps)
 - Taller first step or step stool needed
 - Bikes located ~25” level (additional internal steps down)
- ADA location ~50” level
 - At stations high blocks / wayside lifts
- Automatic / manual traps

Future Blended System Evaluation
Full Fleet EMU Service

(HSR and Modified Level Boarding Stations)
Scenario 1: Shared Platform at HSR Stations Only

- 2-3 Stations: Caltrain / HSR Stations Common Platforms ~50"
- 25 Stations: Caltrain Level Boarding ~25"

Scenario 2: Shared Platforms at All Stations

- 28 Stations: Caltrain / HSR Stations Common Platforms ~50"
Modification A (Future)

Scenario 1: Shared at 2 – 3 Stations
- Continue using both doors
- Seats cannot be restored
- Interior lift needed
- Interior circulation challenges

Scenario 2: Shared at All Stations
- Seal low doors and use high doors only
- Interior reconfiguration / restore seats
- Bike circulation and storage challenge
- Interior lift needed if ADA ~25” level
Modification B (Future)

Scenario 1: Shared at 2 – 3 Stations
- No steps (use at 2-3 stations)
- Interior steps navigated by bikes
- Less steps (use at 25 stations)
- Platform 50"
- Platform 25"

Scenario 2: Shared at All Stations
- Seal traps
- No steps; use at 28 stations
- Interior steps navigated by bikes
- Interior circulation challenges
- Platform 50"

Modification B (Future Scenarios)

- Scenario 1: Shared at 2 - 3 Stations
 - Continue using traps (longer dwell)
 - Interior circulation challenges
- Scenario 2: Shared at All Stations
 - Seal traps
 - Single door (dwell impacts)
 - Bike circulation and storage challenge
Potential Path Forward

Framework

- HSR / Caltrain blended system partnership
- Blended system not yet defined
 - Community planning
 - Environmental evaluation
- Early investment program (defined / environmentally cleared)
 - CBOSS PTC (2015)
 - Electrification Project (2020)
- Need to make EMU design decision now to not preclude common platforms w/ HSR in future
Cars with More Doors Option

- Challenges Associated with More Doors
 - Seat loss / Passenger circulation inside car
- Short-term Solution (2020)
 - Design car with 2 sets of doors
 - Keep high doors sealed / use low doors
 - Car configured similar to original EMUs (mitigate challenges)
 - Request HSR to fund modification costs
- Future Blended System (TBD)
 - Evaluate use of high doors (~50")
 - Associated car interior reconfiguration

Future Blended Service

- Additional Work Needed
- Community Planning / Environmental Review
- Blended System Definition
 - Service Plan
 - System Upgrades
 - Infrastructure (passing tracks, maintenance facility)
 - HSR Stations / Caltrain Station Modifications
Next Steps

May – July Activities

• Public Meetings
• Release Draft RFP to Car Builders
• June JPB
 - Update on proposed path forward
 - Seats/Standees/Bikes/Bathroom balance
• July JPB
 - Release EMU RFP
 - Regional funding plan update
Questions

website: www.caltrain.com/emu
email: calmod@caltrain.com